

Manufacturing Process Development For the OCSW Warhead

PRESENTED BY Dennis Durkin AMSTA-AR-CCL-B

Report Documentation Page					
Report Date 15Aug2001	Report Type N/A	Dates Covered (from to)			
Title and Subtitle Manufacturing Process Development For the OCSW Warhead		Contract Number			
		Grant Number			
		Program Element Number			
Author(s) Durkin, Dennis		Project Number			
		Task Number			
		Work Unit Number			
Performing Organization AMSTA- AR- CCL- B	Name(s) and Address(es)	Performing Organization Report Number			
Sponsoring/Monitoring A Address(es)	Agency Name(s) and	Sponsor/Monitor's Acronym(s)			
NDIA (National Defense I Wilson Blvd, STE. 400 Ar		Sponsor/Monitor's Report Number(s)			
Distribution/Availability Approved for public releas					
_		Symposium, Exhibition & Firing Demonstration document contains color images.			
Abstract					
Subject Terms					
Report Classification unclassified		Classification of this page unclassified			
Classification of Abstract unclassified		Limitation of Abstract UU			
Number of Pages 15					

г

OCSW BALLISTICALLY MATCHED 25MM AMMUNITION FAMILY

TP-S Cartridge

TP Cartridge

- Prescored Steel Warhead
- LX-14 High Explosive
- Defeats PASGT Vest & Helmet
- 51mm RHA (Threshold)
- 51mm HHA (Goal)

Flash Bang Training

- Two-Piece Projectile
- Integral Rotating Band

Program

- **Objective** Develop a cost effective manufacturing process for the OCSW warhead while maintaining warhead efficiency
- **Process** Evaluate OCSW warheads produced using conventional warhead manufacturing processes for fragmentation and relative cost
 - Natural fragmenting forged warheads
 - Embossed blank, cup and draw (BCD) warheads

Progress

- FY98 Forged HF-1 steel warheads
- FY99 Forged (Hot/Cold) AISI 9260, 1340, 1090, 4340 and HF-1
- FY00 Forged 1340 with nose embossing
- FY01 BCD process with AISI 1018 and 1040

FY98 Effort

- HF-1 Steel developed during the late 60's as a "naturally fragmenting" material for artillery and mortar shells
- High Carbon (1.0-1.15%), Silicon (0.7-1.0%) and Manganese (1.6-1.9%) content lead to good natural fragmentation
- Fragmentation is controlled by processing and heat treatment
- Warheads hot forged at 2000°F
- 3 heat treatments evaluated
 - Austenitized, Quench and Temper
 - Normalize and Temper
 - Temper

	U

Weight	Number of	Weight	Average
Group	Fragments	(Grains)	Weight
< .2		144.9	
.2< <.5	323	92.4	0.29
.5< <1.0	153	98.4	0.64
1.0< <1.5	32	36.5	1.14
1.5< <2.0	12	21.8	1.82
2.0<	16	59.7	3.73

Fragmentation Testing

- Warheads were melt cast with Octal (70% HMX 30% TNT)
- Explosive initiated via Risi RP3 detonator and PBXN-5 booster pellet
- Warheads tested using saw dust and water recovery methods
 - Water Warhead placed inside of air filled balloon inside tank of water. Fragments magnetically recovered from water.
 - Saw Dust Warhead placed inside a paper container inside tank of saw dust. Fragments magnetically recovered from saw dust.

Fragmentation Testing

General Dynamics – Ordnance and Tactical Systems (GD-OTS)

Fragment Recovery Water Tank

FY99 Effort

- A matrix of warheads were forged from 5 materials and various heat treats
 - AISI 9260 Forged and Tempered, Normalized and Tempered, Austenitized Oil Quenched and Tempered and Intermediate Austenitized Oil Quenched and Tempered
 - AISI 1340 Forged and Tempered, Austenitized Oil Quenched and Tempered, Intermediate Austenitized Oil Quenched and Tempered, Cold Forged and Stress Relieved and Cold Forged Austenitized Oil Quenched and Tempered
 - **AISI 1090** Austenitized Oil Quenched and Tempered and Austenitized Water Quenched and Tempered
 - AISI 4340 Forged and Tempered and Normalized and Tempered
 - **HF-1** High Temp Austenitized Air Cooled and Tempered
- Heat treatments were chosen to obtain 100ksi min yield strength and while varying the warhead microstructure

Fragmentation Testing

- Warheads were melt cast with Octal (70% HMX 30% TNT)
- Explosive initiated via Risi RP3 detonator and PBXN-5 booster pellet
- Fragments were recovered in saw dust and magnetically retrieved
- 1340 cold forged, austenitized with oil quench was found to have the best fragmentation

Frag Velocity Testing

- Warheads were melt cast with Octal (70% HMX 30% TNT)
- Explosive initiated via Risi RP3 detonator and PBXN-5 booster pellet
- Fragment velocity measured using dual flash x-ray averaging 4500ft/sec

FY00 Effort

- Warheads cold forged from AISI 1340
- Embossing in nose, 60° symmetric groove, pressed in after forging to a depth of 0.016"
- Warheads were press loaded with LX-14
- Explosive initiated via Risi RP3 detonator
- Fragments were recovered in saw dust and magnetically retrieved
- Inertly charged warheads were Mann Barrel tested (-65, 70, 145°F) to validated launch survivability

Embossing in Nose

Nose Embossing Effect on Fragmentation

Non-Embossed

Embossed

Fragments from Nose Embossing

FY00 Effort

OCSW Warhead Forging Process

Warhead forging process developed by Medico Industries, Wilkes-Barre, PA

FY00-01 Effort

- Blank, Cup and Draw (BCD) being developed by General Dynamics –
 Ordnance and Tactical Systems (GD-OTS)
- Process demonstrated with AISI 1018 and 1045
- Fragmentation testing at GD-OTS (Downey, CA) showed 1045 BCD warhead to have the largest percent fragments in the targeted 2-3 grain weight

OCSW Warhead BCD Process

Summary

- Forged warhead process has been demonstrated AISI 1340 provided best fragmentation
- BCD Process demonstrated AISI 1045 provided best fragmentation
- BCD process provides largest percent fragments in targeted 2-3 grain weight zone
- Forged process provides broader range of fragment weights
- Process development continuing on BCD process to reduce process cost
- A study of embossing depth/geometry and warhead material is needed to optimize fragmentation